F_{μ} -PERFECTELYRETRACTS, F_{μ} -SEMI INTERIOR AND F_{μ} -IRRESOLUTING MAPPING

Mohammed M. Khalaf¹, Kamal Nimer², Sajjad Hussain^{*, 3}

¹Department of Mathematics, Faculty of Science, Al-Azahar University, As suit, Egypt.

²Department of Basic Sciences and Mathematics Faculty of Science, Philadelphia University Amman, Jordan.

^{,2,3} Current Address : Mathematics Department, College of Science, Majmaah University, Al-Zulfi, KSA

*email: Corresponding author: <u>s.nawaz@mu.edu.sa</u>

ABSTRACT: Throughout the literature, if (X, δ) is an F-ts, and $Y \subset X$, the induced F-topological Vicente [Fuzzy Sets and Systems 58 (1993) 365] introduced a new concept of F-topological subspaces, which coincides with the usual definition in the case that $\mu = \chi_Y$. Also, they introduced the concepts of F_{μ} -open sets and F_{μ} -continuity. In this paper, using the previous concepts, we introduce weaker forms of F_{μ} -continuity. The notion of an F-retract was introduced by Rodabough [J. Math. Anal. Appl. 79 (1981) 273]. Here, we introduce the weaker forms of it. The notions of F_{μ} -semi closure, F_{μ} -semi interior and F_{μ} -irresolute mapping are given. Many results have been obtained.

Keyword F_{μ} -perfectelyretract, F_{μ} -semi closure, F_{μ} -semi interior, F_{μ} -irresolute mapping

INTRODUCTION AND PRELIMINARIES

Weaker forms of F-continuity between fuzzy topological spaces have been Considered by many authors [1,4,5,22] using the concepts of F-semi open sets [1], F-preopen sets [20], F-strongly semi open sets [2], F-semi preopen sets [7], F-Regular open sets [15]. Macho Stadler and de Prada Vicente [12] introduced and investigated F-topological subspaces and F_{μ} -continuity. We introduce and study in Section 1 a new F-topological notions called F_{μ} -

perfectly continuous, F_{μ} - completely continuous and F_{μ} - R- Continuous, F_{μ} -perfectely retract, Using these notions in the same section we define and study F_{μ} -completely retract, F_{μ} -R-retract , F_{μ} -neighbourhood perfectly retract, F_{μ} -neighborhood completely retract and F_{μ} -neighbourhood R-retract. In Section 2, the notions of F_{μ} -semi closure, F_{μ} -semi interior and F_{μ} -irresolute mapping are introduced. Some of the fundamental properties of these concepts are investigated.

For definitions and results not explained in this paper, we refer to the papers [3,8,11,21,24], assuming them to be well known. For further reading see [6,10,13,14,16–20]. Let X be a non-empty set. A fuzzy set in X is a function with domain X and values in I [23]. The words fuzzy set and fuzzy topological space will be abbreviated as F-set and F-ts, respectively [9]. Also by $Int_{\mu}(v)$, $InCl_{\mu}(v)$ and $\mu - v$ we will denote, respectively, the interior, closure, and complement of the F-set v of F-topological subspace. We mention the following definitions and results

Let $(X; \delta)$ be an F-ts and $\mu \in I^X$. We call $\mathcal{A}_{\mu} = \{ v \in I^X : v \leq \mu \}$

Definition [12]. The family $\delta_{\mu} = \{v \land \mu : v \in \delta\}$ is the F_{μ} -topology induced over μ by δ . The elements of δ_{μ} are called F_{μ} -open sets

Proposition [12]. δ_{μ} verifies the following properties:

(i) *if* $v \in \delta_{\mu}$, then $v \in \mathcal{A}$; (ii) C0, ; $\mu \in \delta_{\mu}$ (iii) *if* $\mu_{1}, \mu_{2} \in \delta_{\mu}$, then $\mu_{1} \wedge \mu_{2} \in \delta_{\mu}$; (iv) *if* $\{v_{i}: j \in J\} \subset \delta_{\mu}$, *then* $\vee_{i \in J} v_{i} \in \delta_{\mu}$

Definition [12]. $v \in \mathcal{A}_{\mu}$ is a F_{μ} -closed set if $\mu - v \in \delta_{\mu}$ we note δ_{μ}^{c} the family of all F_{μ} -closed sets.

1- ON F_{μ} - RETRACTS

Definition 1.1 Let $f : (X, \delta) \to (Y, \gamma)$ be a mapping from a F-ts (X, δ) to another F-ts $(Y, \gamma), \mu \in I^X$. Then f is called : (i) a F-perfectlycontinuous (briefly, $F_{\mu}PC$) mapping

 F_{μ} for each $v \in \gamma_{f(\mu)}$, we have $\mu \wedge f^{-1}(v)$ is both F_{μ} open and F_{μ} -closed set of X.

(ii) a F_{μ} - completely continuous (briefly, $F_{\mu}CC$) mapping F_{μ} for each $v \in \gamma_{f(\mu)}$ we have $\mu \wedge f^{-1}(v)$ is regularopen set of X.

(iii) a F_{μ} -R-continuous (briefly, F_{μ} RC) mapping F_{μ} for each F_{μ} -regular open $\in \gamma_{f(\mu)}$, We have $\mu \wedge f^{-1}(v)$ is F_{μ} - regular open of X.

Remark 1.1 The implications between these different concepts are given by the following diagram:

$$F_{\mu}PC \implies F_{\mu}CC \implies F_{\mu}RC$$

The converse of the above implication need not be true in general, as shown by the following examples.

Example 1.1 Let X = { a, b }, Y = { y }, $\delta = \{ \underline{0}, \underline{1}, \lambda_1, \lambda_2, \lambda_3 \}$. and

 $\gamma = \{\underline{0}, \underline{1}, \theta_1, \theta_2, \theta_3\}$. $\lambda_1, \lambda_2, \lambda_3$ and $\mu \in I^X$, θ_1 , θ_2 , $\theta_3 I^{\gamma}$, defined by $\lambda_1 = a_{0.4}$ V $b_{0.3}$ $\lambda_2 = a_{0.3}$ V $b_{0.2}$ $\lambda_3 = a_{0.2}$ V $b_{0.1}$ V $\mu = a_{0.6}$ b_{07} $\theta_1 = y_{0.4}$ $\theta_2 = y_{0.5}$ $\theta_3 = y_{0.6}$ Then, the constant function f is F_{μ} -R continuous, but not F_{μ} -C continuous. **Example 1.2** Let $X = Y = \{a, b\}, \delta = \{0, 1, \dots, b\}$

 λ_1, λ_2 . and $\gamma = \{\underline{0}, \underline{1}, \theta_1, \theta_2\}$. λ_1, λ_2 and $\mu \in I^X$, $\theta_1, \theta_2 \in I^{\gamma}$, defined by

$$\begin{array}{lll} \lambda_1 = a_{0.1} & \lor & b_{0.1} \\ \lambda_2 = a_{0.2} & \lor & b_{0.3} \\ \mu = a_{0.5} & \lor & b_{0.4} \\ \theta_1 = a_{0.3} & \lor & a_{0.2} \\ \theta_2 = a_{0.1} & \lor & a_{0.1} \end{array}$$

f(a) = b, f(b) = a. Then f is F_{μ} -C – continuous, but not F_{μ} -P continuous.

Definition 1.2 $\mu \in I^X$, A F- ts (X, δ) is called a F_{μ} extremally disconnected space (abbreviated as F_{μ} EDspace), μ -closure of every F_{μ} -open set of X is F_{μ} -open

Lemma 1.1 Let (X, δ) be an $F_{\mu}ED$ -space, $\mu \in I^X$. Then, if λ is F_{μ} -regular open set of X, it is both F_{μ} -open and F_{μ} -closed

Theorem 1.1 Let (X, δ) be an $F_{\mu}ED$ -space, $\mu \in I^X$, and f: $(X, \delta) \to (Y, \gamma)$ be a mapping. Then the following are equivalent. (i) f is F_{μ} -PC (ii) f is F_{μ} -CC **Proof** It follows from lemma 1.1

Theorem 1.2 Let $f:(X,\delta) \to (Y,\gamma)$ be a mapping, $\mu \in I^X$. Then, f is F_{μ} -perfectely continuous (resp., F_{μ} completely continuous) iff the inverse image of every F_{μ} -closed set of Y is F_{μ} -open an F_{μ} -closed (resp., F_{μ} regular open set of X)

Proof obvious.

Theorem 1.3. Let (X, δ) , (Y, γ) be F-ts's. and $f : (X, \delta) \rightarrow (Y, \gamma)$ be a mapping if the graph $g : (X, \delta) \rightarrow (X \times Y, \theta)$ of f is F_{μ} -perfectelycontinuous (resp., F_{μ} -

completely continuous) so is f , where θ is the F- product topology generated by δ and γ

Proof. Suppose the graph $g: (X, \delta) \to (X \times Y, \theta)$ is F_{μ} -Perfectelycontinuous

Let $v \in \gamma_{f \to (\mu)}$, i.e. $v = f^{\to}(\mu) \land \eta$ where $\eta \in \gamma$, we want to show that $, \mu \land f^{\leftarrow}(f^{\to}(\mu) \land \eta) \in \delta_{\mu}$. since $\underline{1} \times \eta \in \theta$, $g^{\to}(\mu) \land (\underline{1} \times \eta) \in \theta_{g \to (\mu)}$,

then $\mu \wedge g^{\leftarrow}(g^{\rightarrow}(\mu) \wedge (\underline{1} \times \eta)) = \mu \wedge g^{\leftarrow}(\underline{1} \times \eta) = \mu \wedge (\underline{1} \wedge f^{\leftarrow}(\eta)) = \mu \wedge f^{\leftarrow}(\eta) = \mu \wedge f^{\leftarrow}(f^{\rightarrow}(\mu) \wedge \eta)$ is an F_{μ} -open and an F_{μ} -closed set of δ_{μ} so f is F_{μ} -perfectecontinuous. The proof of F_{μ} -completelycontinuous by the same fashion.

Definition 1.3 [13] Let (X, δ) be a F-ts, and $A \subset X$, Then, the F- subspace (A, δ_A) is called a F_{μ} -retract of $(X, \delta) F_{\mu}$ there exists a F_{μ} -continuous mapping $r : (X, \delta) \rightarrow$ (A, δ_A) such that r(a) = a for all $a \in A$. In this case ris called a F_{μ} -retraction.

Definition 1.4 Let (X, δ) be a F-ts, and $A \subset X$, Then, the F- subspace (A, δ_A) is called a F_{μ} -perfectely retract (F_{μ} -completely retract, F_{μ} -R-retract) of (X, δ) F_{μ} there exists a F_{μ} - F_{μ} -perfectly continuous (F_{μ} - completely continuous, F_{μ} - R- continuous) mapping $r : (X, \delta) \rightarrow$ (A, δ_A) such that r(a) = a for all $a \in A$. In this case ris called a F_{μ} -perfectly retraction (F_{μ} -completely retraction, F_{μ} -R-retractretraction)

Remark 1.2 The implications between these different concepts are given by the following diagram:

 $F_{\mu}P$ retract \Rightarrow $F_{\mu}C$ retract \Rightarrow $F_{\mu}R$ - retract

The converse of the above implication need not be true in general, as shown by the following examples.

Example 1.3 .Let λ and μ be F- sets on X = { a, b }, defined by

 $\begin{array}{l} \lambda = a_{0.2} \lor b_{0.3} \\ \mu = a_{0.4} \lor b_{0.7} \\ ,\delta = \left\{ \underline{0}, \underline{1}, \lambda \right\}, \text{ and } A = \left\{ a \right\} \subset X. \text{ Then, } (A, \delta_A) \text{ is } \\ a \ F_{\mu}\text{-R-retract of } (X, \delta), \text{ but not a } F_{\mu}\text{-} C \text{ retract.} \end{array}$

Example 1.4 Let λ , β and μ be F- sets on X = { a, b }, defined by $\lambda = a_{0.2} \lor b_{0.2}$ $\beta = a_{0.4} \lor b_{0.4}$ $\mu = a_{0.7} \lor b_{0.9}$

 $\delta = \{\underline{0}, \underline{1}, \lambda, \beta\}$, and $A = \{a\} \subset X$. Then, (A, δ_A) is a F_{μ} -C - retract of (X, δ) , but not a F_{μ} -P - retract.

Theorem 1.4 Let (X, δ) be a F-ts, $A \subset X$ and r: $(X, \delta) \rightarrow (A, \delta_A)$ be a mapping such that $r(a) = a \quad \forall a \in A$. if the graph $g : (X, \delta) \rightarrow (X \times A, \theta)$ of r is F_{μ} -perfectelycontinuous (resp., F_{μ} completelycontinuos) then f is a F_{μ} -retraction, where θ is the product topology generated by δ and δ_A

Proof. It follows directly from Theorem 1.3

Definition 1.5 Let (X, δ) be a F_{μ} -ts. Then (A, δ_A) is said to be a F_{μ} -neighbourhood perfectly retract (F_{μ} -neighborhood completely retract, F_{μ} -neighborhood R-retract) (F_{μ} -nbd P-retract, F_{μ} -nbd R-retract, F_{μ} -nbd C-retract) of (X, δ) if (A, δ_A) is a F_{μ} - perfectly retract (F_{μ} - completely retract, F_{μ} - R-retract) of ((Y, δ_Y) , such that $A \subset Y \subset X$, $1_Y \in \delta$

Remark 1.3 Every F_{μ} -P-retract is a F_{μ} -nbd P-retract, but the converse is not true.

Example 1.5 Let X= { a, b, c }, A={ a } ⊂ X, λ_1, λ_2 and μ be F-sets on X, defined by $\lambda_1 = a_{0.2} \lor b_{0.2} \lor c_{0.4}$ $\lambda_2 = a_1 \lor b_1$ $\mu = a_{0.4} \lor b_{0.4} \lor c_{0.5}$ Consider $\delta = \{\underline{0, 1}, \lambda_1, \lambda_2, \lambda_1 \lor \lambda_2, \lambda_1 \land \lambda_2\}$. Then (A, δ_A) is a F_{μ} -nbd P-retract of (X, δ) , but not a F_{μ} -P-retract of (X, δ) .

Example 1.6 Let $X = \{a, b, c\}$, $A = \{a\} \subset X, \lambda_1, \lambda_2$ and μ be F- sets on X, defined by $\lambda_1 = a_{0.2} \lor b_{0.2} \lor c_{0.4}$ $\lambda_2 = a_1 \lor b_1$ $\mu = a_{0.8} \lor b_{0.8} \lor c_{0.5}$ Consider $\delta = \{\underline{0}, \underline{1}, \lambda_1, \lambda_2, \lambda_1 \lor \lambda_2, \lambda_1 \land \lambda_2\}$. Then (A, δ_A) is a F_{μ} -nbd C-retract of (X, δ) , but not a F_{μ} -C-retract of (X, δ) .

Example 1.7 in example 1.6 (A, δ_A) is a F_{μ} -nbd R-retract of (X, δ), but not a F_{μ} -R-retract. of (X, δ)

2- ON F_{μ} -SEMI CLOSURE AND F_{μ} -SEMI INTERIOR AND ON F_{μ} -IRRESOLUTE MAPPING

Definition 2.1 Let (X, δ) be a F-ts , $\mu, \lambda \in A_{\mu}$. Then v is called (i) (F.S.Mahmoud 2003) a F_{μ} -semiopen (briefly, F_{μ} so) set if there exists $\lambda \in \delta_{\mu}$ such that $\nu \leq \lambda \leq Cl_{\mu}(\nu)$ (or $\nu \leq Cl_{\mu}(Int_{\mu}(\nu))$). (ii) [15] a F_{μ} -semiclosed (briefly, F_{μ} sc) set if there exists $\nu \in \delta_{\mu}$ such that $Int_{\mu}(\nu) \leq \lambda \leq \nu$ (or, $\lambda \leq Cl_{\mu}(Int_{\mu}(\lambda))$

(iii) The F_{μ} -semi-interior of λ , denoted by $SI_{\mu}(\lambda) = \vee$ { $\nu \in \delta_{\mu} : \nu \leq \lambda, \nu \text{ is } F_{\mu} \text{ so}$ }. (iv) The F_{μ} -semi -closure of λ , denoted by $SC_{\mu}(\lambda) = \wedge \{\nu \in \delta_{\mu} : \nu \geq \lambda, \nu \text{ is } F_{\mu} \text{ sc}\}$.

Theorem 2.1. Let (X, δ) be a F-ts , $\mu, \lambda \in$ \mathcal{A}_{μ} . The following statements are equivalent. (i) λ is F_{μ} so (ii) $\lambda \leq Cl_{\mu}(Int_{\mu}(\lambda))$. (iii) $Cl_{\mu}(\lambda) = Cl_{\mu}(Int_{\mu}(\lambda)).$ (iv) $\mu - \lambda$ is $F_{\mu}sc$ (v) $Int_{\mu} (Cl_{\mu}(\mu - \lambda)) \leq \mu - \lambda$ (vi) $t_{\mu} (Cl_{\mu}(\mu - \lambda)) = Int_{\mu} (\mu - \lambda)$ **Proof** (i) \Rightarrow (ii) Let λ be F_{μ} so There exists $\nu \in \delta_{\mu}$ such that $\nu \leq \lambda \leq Cl_{\mu}(\nu)$ by Theorem 1.3. $Int_{\mu}(\nu) = \nu$ since $v \leq \lambda$, we have $Int_{\mu}(v) = v \leq Int_{\mu}(\lambda)$. It implies $Cl_{\mu}(\nu) \leq Cl_{\mu}$ ($Int_{\mu}(\lambda)$). Since $\lambda \leq Cl_{\mu}(\nu)$, we have $\lambda \leq Cl_{\mu}(Int_{\mu}(\lambda))$. (ii) \Rightarrow (iii) By the definition of Cl_{μ} and (ii), $Cl_{\mu}(\lambda) \leq Cl_{\mu}(Int_{\mu}(\lambda))$. Since, $Int_{\mu}(\lambda) \leq \lambda, Cl_{\mu}(Int_{\mu}(\lambda)) \leq Cl_{\mu}(\lambda)$. Thus, we have $Cl_{\mu}(\lambda) = Cl_{\mu}(Int_{\mu}(\lambda))$. (iii) \Rightarrow (i) Put $v = Int_{\mu}(\lambda)$. By the definition of t_{μ} , from Theorem 1.3, we have $\nu \leq \lambda \leq C l_{\mu}(\lambda) =$ $Cl_{\mu}(Int_{\mu}(\lambda) = Cl_{\mu}(\nu)$. Hence, λ is F_{μ} so. (iv) \Rightarrow (i) It is easily proved from the following $\nu \leq$ $\lambda \leq Cl_{\mu}(v) \Leftrightarrow \mu - Cl_{\mu}(v) \leq \mu - \lambda \leq \mu - v \Leftrightarrow$ $Int_{\mu}(\mu - \nu) \leq \mu - \lambda \leq \mu - \nu$. (from Theorem 1.3) (ii) \Rightarrow (v) and (iii) \Rightarrow (vi) are easily proved from Theorem 1.3 **Theorem 2.1.** (F.S. Mahmoud 2003) Let (X, δ) be a

F-ts, $\mu \in \mathcal{A}_{\mu}$

(i) Any union of $F_{\mu}so$ sets is $F_{\mu}so$

(ii) Any intersection of $F_{\mu}sc$ sets is $F_{\mu}sc$

Theorem 2.2. Let (X, δ) be a F-ts , μ , β , $\lambda \in \mathcal{A}_{\mu}$. Then,

(i) $Int_{\mu}(\lambda)$ is F_{μ} so

(ii)
$$Cl_{\mu}(\lambda)$$
 is F_{μ} sc

- (iii) If λ is F_{μ} so and $Int_{\mu}(\lambda) \le \beta \le Cl_{\mu}(\lambda)$, then β is F_{μ} so.
- (iv) If λ is F_{μ} sc and $Int_{\mu}(\lambda) \leq \beta \leq Cl_{\mu}(\lambda)$, then β is F_{μ} sc.

Proof we prove only (iii) and (iv).

(iii) Since λ is F_{μ} so, then there exists $\nu \in \delta_{\mu}$ such that, $\nu \leq \lambda \leq Cl_{\mu}(\nu) \Rightarrow$ $\nu = Int_{\mu}(\nu) \leq Int_{\mu}(\lambda)$ and $Cl_{\mu}(\lambda) \leq Cl_{\mu}(\nu)$. Thus, $\nu \leq \beta \leq Cl_{\mu}(\nu)$. Hence, β is F_{μ} so. (iv) It is easily proved from (iii) and Theorem 2.1. And the following $Int_{\mu}(\lambda) \leq \beta \leq Cl_{\mu}(\lambda) \Leftrightarrow \mu - Cl_{\mu}(\lambda) \leq \mu - \beta \leq \mu - Int_{\mu}(\lambda) \Leftrightarrow Int_{\mu}(\mu - \lambda) \leq \mu - \beta \leq Cl_{\mu}(\mu - \lambda)$ by Theorem 2.1

Theorem 2.3. Let (X, δ) be a F-ts, $\mu, \nu, \lambda \in \mathcal{A}_{\mu}$. The following statements are valid:

(i)
$$\lambda$$
 is F_{μ} so iff $\lambda = SI_{\mu}(\lambda)$.
(ii) λ is F_{μ} sc iff $\lambda = SC_{\mu}(\lambda)$.
(iii) $SC_{\mu}(\underline{0}) = \underline{0}$
(iv) $Int_{\mu}(\lambda) \leq SI_{\mu}(\lambda) \leq \lambda \leq SC_{\mu}(\lambda) \leq Cl_{\mu}(\lambda)$.
(v) $SC_{\mu}(\lambda) \vee SC_{\mu}(\nu) = SC_{\mu}(\lambda \vee \nu)$.
(vi) $SC_{\mu}(SC_{\mu}(\lambda)) = SC_{\mu}(\lambda)$
(vii) $Cl_{\mu}(SC_{\mu}(\lambda)) = SC_{\mu}(Cl_{\mu}(\lambda)) = Cl_{\mu}(\lambda)$
(viii) $SI_{\mu}(\mu - \lambda) = \mu - SC_{\mu}(\lambda)$.
Proof we prove only (vii) and (viii).
(vii) From (ii) and Theorem 2.2 $SC_{\mu}(Cl_{\mu}(\lambda)) = Cl_{\mu}(\lambda)$,
we only show that
 $Cl_{\mu}(SC_{\mu}(\lambda)) = Cl_{\mu}(\lambda)$. Since $\lambda \leq SC_{\mu}(\lambda)$, $Cl_{\mu}(SC_{\mu}(\lambda))$
 $\geq Cl_{\mu}(\lambda)$. Suppose that

 $Cl_{\mu}(SC_{\mu}(\lambda)) \leq Cl_{\mu}(\lambda)$. By the definition of Cl_{μ} , there exists $\xi \in \delta_{\mu}$ with $\lambda \leq \xi$

such that, $Cl_{\mu}(SC_{\mu}(\lambda)) \geq \xi \geq Cl_{\mu}(\lambda)$. On the other hand, since $\xi \leq Cl_{\mu}(\xi), \lambda \leq \xi \Rightarrow SC_{\mu}(\lambda) \leq SC_{\mu}(\xi) = SC_{\mu}(Cl_{\mu}(\xi)) = Cl_{\mu}(\xi) = \xi$. Thus, $Cl_{\mu}(SC_{\mu}(\lambda)) \leq \xi$. It is a contradiction. Hence $Cl_{\mu}(SC_{\mu}(\lambda)) \leq Cl_{\mu}(\lambda)$. (viii) $\forall \lambda \in \delta_{\mu}$, we have the following:

 $\mu - SC_{\mu}(\lambda) = \mu - \wedge \{ \nu : \nu \ge \lambda, \nu \text{ is } F_{\mu}sc \} = \vee \\ \{ \mu - \nu : \mu - \nu \le \mu - \lambda, \mu - \nu \text{ is } F_{\mu}so \} = SI_{\mu}(\mu - \lambda).$

Definition 2.2 Let (X, δ) and (Y, γ) be a F-tS's, $\mu \in \mathcal{A}_{\mu}$. Let $f: (X, \delta) \longrightarrow (Y, \gamma)$ be a mapping. (i) [Macho Stadler and M. A de Prada Vicente 1993] f is called F_{μ} -continuous mapping iff $f \leftarrow (v) \in \delta_{\mu}$, for each $v \in \gamma_{f(\mu)}$. (ii) [F.S.Mahmoud 2003] f is called F_{μ} -semi continuous mapping iff $f \leftarrow (v)$ is $F_{\mu}so \in \delta_{\mu}$, for each $v \in \gamma_{f(\mu)}$. (iii) f is called F_{μ} -irresolute mapping iff $f \leftarrow (v)$ is F_{μ} so $\in \delta_{\mu}$, for each $F_{f(\mu)}$ so, $v \in \gamma_{f(\mu)}$. (iv) f is called F_{μ} -irresolute open mapping iff f(v) is F_{μ} so $\in \gamma_{f(\mu)}$, for each $F_{f(\mu)}$ so $v \in \delta_{\mu}$. (v) f is called F_{μ} -irresolute closed mapping iff f(v) is $F_{\mu}sc \in \gamma_{f(\mu)}$, for each $F_{f(\mu)}sc \quad v \in \delta_{\mu}$. **Remark 2.1** Every F_{μ} -continuous mapping is F_{μ} irresolute mapping, but the converse is not true.

Example 2.1 Let $X = \{a, b, c\}, Y = \{y\}, \delta = \{\underline{0}, \underline{1}, \lambda\}$. and $\gamma = \{\underline{0}, \underline{1}, \theta\}$. λ and $\mu \in I^X$, $\theta \in I^Y$, defined by $\lambda = a_{0.1} \lor b_{0.1}$ $\mu = a_{0.2} \lor b_{0.2} c_{0.3}$ $\theta = y_{0.1}$ Then, the constant function f is F_{μ} -irresolute mapping, but not F_{μ} -continuous.

Proposition 2.1 Let (X, δ) and (Y, γ) be a F-tS's, $\mu \in \mathcal{A}_{\mu}$. Let $f : (X, \delta) \to (Y, \gamma)$ be a mapping. If f is F_{μ} -irresolute mapping, then For each F_{μ} sc $\lambda \in \gamma_{f(\mu)}$, $f^{\leftarrow}(\lambda)$ is F_{μ} sc $\in \delta_{\mu}$. Proof For each F_{μ} sc set $\lambda \in \gamma_{f(\mu)} \Rightarrow f(\mu) - \lambda$ is F_{μ} so set $\in \gamma_{f(\mu)}$, $f^{\leftarrow}(f(\mu) - \lambda) \land \mu \leq (\mu - f^{\leftarrow}(\lambda)) \land \mu$ is F_{μ} so set $\in \delta_{\mu}$. Proof For each F_{μ} so set $\in \delta_{\mu}$.

Proposition 2.2 Let (X, δ) and (Y, γ) be a F-tS's, $\mu \in \mathcal{A}_{\mu}$.Let $f : (X, \delta) \to (Y, \gamma)$ be a mapping. If For each $F_{\mu}sc \lambda \in \gamma_{f(\mu)}, f^{\leftarrow}(\lambda)$ is $F_{\mu}sc \in \delta_{\mu}$ then, $f\left(SC_{\mu}(\lambda)\right) \leq SC_{f(\mu)}(f(\lambda))$, for each $\lambda \in \delta_{\mu}$. **Proof** Suppose there exists $\lambda \in \delta_{\mu}$ such that,

$$f\left(SC_{\mu}(\lambda)\right) \leq SC_{f(\mu)}(f(\lambda))$$

Since, $SC_{f(\mu)}(f(\lambda)) \leq \nu \in \gamma'_{f(\mu)}$. Moreover, $(f(\lambda) \leq \nu \Rightarrow \lambda \leq f^{\leftarrow}(\nu) \land \mu$.

 $\Rightarrow f^{\leftarrow}(\nu) \land \mu \text{ is } F_{\mu} \text{sc} \in \delta_{\mu}^{\circ}, \text{ Thus, } SC_{\mu}(\lambda) \leq f^{\leftarrow}(\nu)$ $\land \mu \Rightarrow SC_{\mu}(\lambda) \leq f^{\leftarrow}(\nu) \land$ $\mu \geq \lambda$, then $f(SC_{\mu}(\lambda)) \leq SC_{f(\mu)}(\nu \wedge f(\mu)) \geq$ $SC_{f(\mu)}(f(\lambda))$. It is a contradiction **Proposition 2.3** Let (X, δ) and (Y, γ) be a F-tS's, $\mu \in \mathcal{A}_{\mu}$. Let $f : (X, \delta) \longrightarrow (Y, \gamma)$ be a mapping. If $f^{\leftarrow}(\mathrm{Sl}_{\mathrm{f}(\mu)}(\lambda)) \land \mu \leq \mathrm{Sl}_{\mu}(f^{\leftarrow}\lambda) \land \mu)$, for each λ is $F_{\mu}so \in \gamma_{f(\mu)} \in \gamma_{f(\mu)}$, then *f* is F_{μ} -irresolute mapping. **Proof** Let λ is F_{μ} so $\in \gamma_{f(\mu)}$ From theorem 2.3(i). $\lambda = SI_{f(\mu)}(\lambda)$. Since, $f^{\leftarrow}(\lambda) \wedge \mu \leq SI_{\mu}(f^{\leftarrow}(\lambda)) \wedge$ μ). On the other hand, by Theorem 2.3(iv), $f^{\leftarrow}(\lambda) \land \mu \geq SI_{\mu}(f^{\leftarrow}(\lambda) \land \mu)$. Thus, $f^{\leftarrow}(\lambda) \land \Lambda$ $\mu = SI_{\mu}(f^{\leftarrow}(\lambda)) \land \mu$), that is $f^{\leftarrow}(\lambda)) \land$ μ is $F_{\mu}so \in \delta_{\mu} \Rightarrow f$ is F_{μ} -irresolute mapping. **Theorem 2.4** Let (X, δ) and (Y, γ) be a F-ts's, $\mu \in \mathcal{A}_{\mu}$. Let $f: (X, \delta) \to (Y, \gamma)$ be a mapping. The following statements are equivalent . (i) A map f is F_{μ} -irresolute open mapping $(ii) f(SI_{\mu}(\lambda)) \wedge f(\mu) \leq SI_{f(\mu)}(f(\lambda) \wedge f(\mu)),$ for each λ is F_{μ} so $\in \delta_{\mu}$. (iii) $SI_{\mu}(f^{\leftarrow}\lambda) \land \mu \leq (f^{\leftarrow}(SI_{f(\mu)}(\lambda)) \land$ μ , for each $\lambda \in \gamma_{f(\mu)}$ (iv) For any $\nu \in \gamma_{f(\mu)}$ and any $F_{\mu}sc \lambda \in$ δ_{μ} such that $f^{\leftarrow}(\nu) \wedge \mu \leq \lambda$, there exists F_{μ} sc set $\rho \in \gamma_{f(\mu)}$ with $\nu \leq \rho$ such that $f^{\leftarrow}(\rho) \land \mu \leq \lambda$. **Proof** (i) \Rightarrow (ii) For each λ be F_{μ} so set $\in \delta_{\mu}$, since $SI_{\mu}(\lambda) \leq \lambda$ from Theorem 2.3(iv). $f(SI_{\mu}(\lambda)) \wedge f(\mu) \leq f(\lambda) \wedge f(\mu)$ by (i) f $(SI_{\mu}(\lambda)) \wedge f(\mu)$ is F_{μ} so set $\in \delta_{\mu}$, hence, $f(SI_{\mu}(\lambda)) \wedge f(\mu) \leq SI_{f(\mu)}(f(\lambda)) \wedge f(\mu)).$ (ii) \Rightarrow (iii) for each $\lambda \in \gamma_{f(\mu)}$ from (ii) $f(SI_{\mu}(f^{\leftarrow}(\lambda))) \wedge$ $f(\mu) \leq SI_{f(\mu)}(f(f(\lambda)) \wedge f(\mu)) \leq SI_{f(\mu)}(\lambda) \wedge f(\mu)$ $f(\mu) \Rightarrow SI_{\mu}(f^{\leftarrow}(\lambda))) \land \mu \leq f^{\leftarrow}(SI_{f(\mu)}(\lambda)) \land \mu.$ (iii) \Rightarrow (iv) Let λ be F_{μ} sc set $\in \delta_{\mu}^{\circ}$ and $\lambda \in$ $\gamma'_{f(\mu)}$ such that $f^{\leftarrow}(\nu) \land \mu \leq \lambda$. from Theorem 2.2 $\lambda = Int_{\mu}$ (CI_{μ}((λ)). Since μ – $\lambda = f^{\leftarrow} (\mu - \nu) \wedge \mu$, we have $SI_{\mu}(\mu - \lambda) =$ $\mu - \lambda \leq SI_{\mu} (f^{\leftarrow} (\mu - \nu)) \wedge \mu, by (iii) \mu \lambda \leq SI_{\mu}(f^{\leftarrow}(\mu - \nu)) \wedge \mu \leq f^{\leftarrow}(SI_{f(\mu)}(\mu - \nu))$ $\nu \,)) \, \wedge \, \mu \, \Rightarrow \, \lambda \geq \mu - \left(f^{\leftarrow} \left(SI_{f(\mu)}(\mu - v) \right) \wedge \mu \right) =$ $f^{\leftarrow} \left(\mu - (SI_{f(\mu)}(\mu - v)) \land \mu \right) = f^{\leftarrow} (SC_{f(\mu)}(v)) \land$ μ.

By Theorem 2.3 (viii), thus there exists $F_{\mu} sc$ set $\rho=SC_{f(\mu)}(v)\in\gamma_{f(\mu)}' \ \, \text{with}\ v\leq\rho\ \, \text{such that} \quad f^{\leftarrow}(\rho)\ \, \Lambda$ $\mu \leq \lambda$ (iv) \Rightarrow (i) Let σ be F_{μ} so set $\in \delta_{\mu}$, $\lambda = \mu -$ σ is F_{μ} sc set $\in \delta_{\mu}$ put $v = f(\mu) - f(\sigma)$ $\in \gamma_{f(\mu)}^{`}$ we obtain $f^{\leftarrow}(v) \land \mu = f^{\leftarrow}(f(\mu) - f(\sigma)) \leq$ $\mu - (\sigma) = \lambda$. by (iv) there exists $\rho \in \gamma'_{f(\mu)}$ with v $\leq \rho$ such that $f^{\leftarrow}(\rho) \land \mu \leq \lambda = \mu - \sigma \implies \sigma =$ $\mu - (f^{\leftarrow}(\rho) \land \mu) = f^{\leftarrow}(\mu - \rho) \land \mu$, Thus $f(\sigma)$ $\wedge f(\mu) \le f(f^{\leftarrow}(\mu - \rho) \land \mu) \le (\mu - \rho) \land f(\mu))$ (1) On the other hand , since $v \leq \rho$ From (1) $f(\sigma) \wedge f(\mu) = f(\mu) - \nu \ge f(\mu) - \rho$. Hence, $f(\sigma) \wedge f(\mu) = f(\mu) - \rho$ that is $f(\sigma)$ is F_{μ} so \in $\gamma_{f(\mu)}$. Then f is F_{μ} -irresolute open mapping **Definition 2.3** Let (X, δ) and (Y, γ) be a F-ts's, $\mu \in \mathcal{A}_{\mu}$. Let $f: (X, \delta) \to (Y, \gamma)$ be a mapping, then

f is called F_{μ} -almost open mapping iff for each $\lambda \in \delta_{\mu}$, with $\lambda = Int_{\mu}(Cl_{\mu}(\lambda))$. $f(\lambda) \in \gamma_{f(\mu)}$. **Theorem 2.5** 2 Let (X, δ) and (Y, γ) be a F-ts's, $\mu \in \mathcal{A}_{\mu}$. Let $f : (X, \delta) \rightarrow$ be a mapping. The following statments are equivalent. (i) A map f is F_{μ} -almost open mapping $(ii) f(Int_{\mu}(\lambda))$ $\leq Int_{f(\mu)}(f(\lambda))$, for each λ is F_{μ} sc $\in \delta_{\mu}$ (iii) For any $v \in \gamma'_{f(\mu)}$ and any $\lambda = Cl_{\mu}(Int_{\mu}(\lambda))$ such that $f^{\leftarrow}(v) \land \mu \leq \lambda$ there exists $\rho \in \gamma_{f(\mu)}$ and $v \leq \rho$ such that $f^{\leftarrow}(\rho) \wedge \mu \leq \lambda$ **Proof** (i) \Rightarrow (ii) Let λ be F_{μ} sc $\in \delta_{\mu}$ that is $Int_{\mu}(Cl_{\mu}(\lambda)) \leq \lambda$. From Theorem 2.2, we easily prove the following $Int_{\mu}(Cl_{\mu}(\lambda)) = Int_{\mu}(Cl_{\mu}(Cl_{\mu}(\lambda))).$ Since f is F_{μ} -almost open mapping, $Int_{f(\mu)}(f(Int_{\mu}(Cl_{\mu}(\lambda)) = f(Int_{\mu}(Cl_{\mu}(\lambda)) \in$ $\gamma_{f(\mu)}$. (1)On the other hand, $Int_{\mu}(Cl_{\mu}(\lambda)) \leq \lambda \Rightarrow$ $Int_{\mu}(Int_{\mu}(Cl_{\mu}(\lambda))) \leq Int_{\mu}(\lambda),$ Thus, $Int_{\mu}(\lambda) = Int_{\mu}(Cl_{\mu}(\lambda)) \leq \lambda \Rightarrow$ $f(Int_{\mu}(\lambda)) = f(Int_{\mu}(Cl_{\mu}(\lambda))) =$ $Int_{f(\mu)}(f(Int_{\mu}(Cl_{\mu}(\lambda))) \leq Int_{f(\mu)}(f(\lambda))$ From(1) (ii) \Rightarrow (i) $\lambda = Int_{\mu}(Cl_{\mu}(\lambda)) \in \delta_{\mu}$. Since $Int_{\mu}(\lambda) = \lambda$ and λ is F_{μ} SC by (ii),

 $f(\lambda) = f(Int_{\mu}(\lambda)) \leq Int_{f(\mu)}(f(\lambda))$ From Theorem 2.2, $f(\lambda) = Int_{f(\mu)}(f(\lambda)) \in \gamma_{f(\mu)}$. (i) \Rightarrow (iii) let $\lambda = Cl_{\mu}(Int_{\mu}(\lambda))$ and $\nu \in \gamma'_{f(\mu)}$ such that $f^{\leftarrow}(v) \wedge \mu \leq \lambda$. But $\rho = f(\mu) - f(\mu - \lambda)$ since $\mu - \lambda = Int_{\mu} (Cl_{\mu}(\mu - \lambda))$, by (1). Since $f^{\leftarrow}(v) \wedge \mu \leq \lambda$ iff $v \leq f(\mu) - f(\mu - \lambda)$ then, $v \leq \rho$, also, $f^{\leftarrow}(\rho) \wedge \mu = f^{\leftarrow}(f(\mu) - f(\mu - \mu))$ $\lambda)) \leq \mu - (\mu - \lambda)) = \lambda \implies f^{\leftarrow}(\rho) \land \mu \leq \lambda.$ (iii) \Rightarrow (i) let σ be F_{μ} sc $\in \delta_{\mu}^{\prime}$ such that $\sigma =$ $Int_{\mu}(Cl_{\mu}(\sigma))$ put $v = f(\mu) - f(\sigma)$ and $\lambda = \mu - \mu$ σ with $\lambda = Cl_{\mu}(Int_{\mu}(\lambda))$, we obtain $f^{\leftarrow}(v) \land \mu = f^{\leftarrow}(f(\mu) - f(\sigma)) \le \mu - (\sigma)) = \lambda$ by (iii) there exists $\rho \in \gamma_{f(\mu)}$ with $v \leq \rho$ such that $f^{\leftarrow}(\rho) \land \mu = \leq \lambda = \mu - \sigma \Rightarrow \sigma = \mu - (f^{\leftarrow}(\rho) \land$ μ = $f^{\leftarrow}(\mu - \rho) \wedge \mu$, Thus $f(\sigma) \wedge f(\mu) \leq$ $f(f^{\leftarrow}(\mu - \rho) \land \mu) \le (\mu - \rho) \land f(\mu))$ (1)On the other hand , since $v \leq \rho$ From (1) $f(\sigma) \wedge f(\mu) = f(\mu) - \nu \ge (\mu - \rho) \wedge f(\mu))$

Hence from (1) and (2) $f(\sigma) \wedge f(\mu) = (\mu - \rho) \wedge f(\mu)$

Theorem 2.6 Let (X, δ) and (Y, γ) be a F-ts's, $\mu \in \mathcal{A}_{\mu}$. Let $f : (X, \delta) \to (Y, \gamma)$ is F_{μ} -semi continuous and F_{μ} -almost open mapping, then f is F_{μ} -irresolute apping **Proof** By Proposition 2.1, we will show that

 $f \leftarrow (\lambda) \land \mu$ is F_{μ} sc set, $\forall F_{\mu} - \text{sc set} \lambda \in \gamma_{f(\mu)}$. Since λ is $F_{f(\mu)}$ sc set $\in \gamma_{f(\mu)}$, we have $Int_{f(\mu)} (Cl_{f(\mu)} (\lambda) \leq$ λ . Since *f* is F_µ – semi Continuous mapping, *f* \leftarrow $(f(\mu) - Cl_{f(\mu)}(\lambda)) \land \mu = (\mu f \leftarrow (C l_{f(\mu)}(\lambda)) \land$ μ is F_{μ} sc set $\in \delta_{\mu}$, that is $f \leftarrow (C l_{f(\mu)}(\lambda)) \land$ μ is F_{μ} sc set $\in \delta_{\mu}$ so, $Int_{\mu} (Cl_{\mu}(f^{\leftarrow} (C l_{f(\mu)}(\lambda)) \wedge$ $\mu \leq f \leftarrow \left(C l_{f(\mu)}(\lambda) \right) \land \mu \; \Rightarrow \;$ $Int_{\mu}\left(Cl_{\mu}(f \leftarrow \left(C \ l_{f(\mu)}(\lambda)\right) \land\right)$ $\leq Int_{\mu}\left(\left(f^{\leftarrow}\left(\mathcal{C} l_{f(\mu)}(\lambda)\right) \wedge \mu\right)\right)$ (1)since *f* is F_{μ} -almost open mapping, and λ is F_{μ} sc set $\gamma_{f(\mu)}$. By proposition 2.2 $f(Int_{\mu}((f^{\leftarrow}(C \ l_{f(\mu)}(\lambda)) \land \mu)$ $\leq Inl_{f(\mu)}(f(f \leftarrow (C l_{f(\mu)}(\lambda)) \land \mu))$ $Inl_{f(\mu)} (Cl_{f(\mu)}(\lambda) = Inl_{f(\mu)}(\lambda) \le \lambda$. $\Rightarrow Int_{\mu} \left(\left(f^{\leftarrow} \left(C l_{f(\mu)}(\lambda) \right) \land \mu \leq f^{\leftarrow}(\lambda) \land \mu \right) \right)$ (2),

Thus, we have $Int_{\mu} (Cl_{\mu}(f^{\leftarrow} (\lambda)) \land \mu)$

$$\leq Int_{\mu} \left(Cl_{\mu}(f^{\leftarrow} \left(C \ l_{f(\mu)}(\lambda) \right) \land \mu \right) \leq Int_{\mu} \left(f^{\leftarrow} \left(C \ l_{f(\mu)}(\lambda) \right) \land \mu \right) \text{ by}(1) \leq f^{\leftarrow} \left(\lambda \right) \land \mu \quad \text{ by}(2). \text{ Hence } f^{\leftarrow} \left(\lambda \right) \text{ is } F_{\mu} \text{ sc }.$$

Conclusion

A new F-topological notions called F_{μ} -perfectly continuous , F_{μ} -

completely continuous and F $_{\mu}$ -R- continuous, F $_{\mu}$ -perfectely retract are introduced and studied , Using these notions we define and study F $_{\mu}$ completely retract, F $_{\mu}$ -R-retract , F $_{\mu}$ neighbourhood perfectly retract, F $_{\mu}$ -neighborhood completely retract and F $_{\mu}$ -neighbourhood Rretract. The notions of F $_{\mu}$ -semi closure, F $_{\mu}$ -semi interior and F $_{\mu}$ -irresolute mapping are introduced.

REFERENCES

- K.K. Azad, On semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [2] B.S. Zhong, Fuzzy strongly semi open sets and fuzzy strong semi continuity, Fuzzy Sets and Systems 52 (1992) 345–351.
- [3] C.L. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] M.A. Fath Allah, On fuzzy topological spaces, Ph.D. Thesis, Assiut University, So hag, Egypt, 1984.
- [5] S. Ganguly, S. Saha, A note on semi open sets in fuzzy topological spaces, Fuzzy Sets and Systems 18 (1986) 83–96.
- [6] M.H. Ghanim, On fuzzy topological space, Ph.D. Thesis, Zagazig University, 1980.
- [7] J.H. Park, B.Y. Lee, Fuzzy semi preopen sets and fuzzy semiprecontinuous mappings, Fuzzy Sets and Systems 67 (1994) 359–364.
- [8] S.T. Hu, Theory of Retracts, Wayne State University Press, Wayne, 1965.
- [9] Y.-M. Liu, M.-K. Luo, Fuzzy Topology, World Scientific, Singapore, 1997.
- [10] R. Lowen, Fuzzy topological spaces and compactness, J. Math. Appl. 56 (1976) 621–633.
- [11] M. Macho Stadler, M.A. de Prada, Strong separation and strong count ability in fuzzy topological spaces, Fuzzy Sets and Systems 43 (1991) 95–116.
- [12] M. Macho Stadler, M.A. de Prada Vicente, On fuzzy subspaces, Fuzzy Sets and Systems 58 (1993) 365–373.
- [13] F.S. Mahmoud, M.A. Fath Alla, Strong-AE and strong-ANE fuzzy topological spaces, J. Fuzzy Math. 8 (2) (2000) 677–690.
- [14] A.S. Mashour, M.H. Ghanim, A.N. Elwakeel, N.N. Morsi, On product fuzzy topological spaces, Fuzzy Sets and Systems 30 (1989) 175–191.

- [15] A.S. Mash hour, A.A. Allam, F.M. Zeyada, Fuzzy regular closed functions and fuzzy irresolute functions, Bull. Fac. Sci. Assuit Univ. 14 (2) (1985) 43–59.
- [16] A.S. Mash hour, M.H. Ghanim, M.A. Fath Alla, On fuzzy noncontiguous mappings, Bull. Calcutta Math. Soc. 78 (1986) 57–69.
- [17] P.-M. Pu, Y.-M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore–Smith convergence, J. Math. Anal. Appl. 76 (1980) 571 (see also p. 599).
- [18] M.N. Mukherjee, Sinha, On some weaker forms of fuzzy continuous and fuzzy open mappings on fuzzy topological spaces, Fuzzy Sets and Systems 32 (1989) 103–114.

- [19] S.E. Rodabaugh, Suitability in fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981) 273.
- [20] M.K. Singal, N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44 (1991) 273–281.
- [21] C.K. Wong, Covering properties of fuzzy topological spaces, J. Math. Anal. Appl. 43 (1973) 697–704.
- [22] T.H. Yalvac, Fuzzy sets and functions on fuzzy topological spaces, J. Math. Anal. Appl. 126 (1987) 409–423.
- [23] L.L. Zadeh, Fuzzy Sets Inform. Center. 8 (1965) 338-353.
- [24] A.M. Zahran, On some near fuzzy continuous functions on fuzzy topological spaces, J. Fuzzy Math. 3 (1) (1995) 209–219