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ABSTRACT: Throughout the literature, if (X, &) is an F-ts, and Y € X, the induced F-topological Vicente [Fuzzy Sets
and Systems 58 (1993) 365] introduced a new concept of F-topological subspaces, which coincides with the usual definition

in the case that 4 = Yy . Also, they introduced the concepts of F#-open sets and Fu -continuity. In this paper, using the
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previous concepts, we introduce weaker forms of Fﬂ-continuity. The notion of an F-retract was introduced by Rodabough [J.
Math. Anal. Appl. 79 (1981) 273]. Here, we introduce the weaker forms of it. The notions of Fﬂ-semi closure, Fu-semi
interior and Fu—irresolute mapping are given. Many results have been obtained.

Keyword F,-perfectelyretract, F,-semi closure, F,-semi interior , F,;-irresolute mapping

INTRODUCTION AND PRELIMINARIES

Weaker forms of F-continuity between fuzzy topological
spaces have been Considered by many authors [1,4,5,22]
using the concepts of F-semi open sets [1], F-preopen sets
[20], F-strongly semi open sets [2], F-semi preopen sets [7],
F-Regular open sets [15]. Macho Stadler and de Prada
Vicente [12] introduced and investigated F-topological

subspaces and Fu—continuity. We introduce and study in
Section 1 a new F-topological notions called Fu'

F,- completely continuous and
these

perfectly continuous,
F - R- Continuous, Fu—perfectely retract, Using
notions in the same section we define and study FM—
completely retract, F,-R-retract ,
perfectly retract, F#-neighborhood completely retract and
F,,-neighbourhood R-retract. .In Section 2, the notions of

F,,-neighbourhood

Fu-semi closure, Fu—semi interior and Fﬂ-irresolute

mapping are introduced. Some of the fundamental properties
of these concepts are investigated.

For definitions and results not explained in this paper, we
refer to the papers [3,8,11,21,24], assuming them to be
well known. For further reading see [6,10,13,14,16-20].

Let X be a non-empty set. A fuzzy set in X is a function with

domain X and values in I [23]. The words fuzzy set and
fuzzy topological space will be abbreviated as F-set and F-ts,

respectively [9]. Also by Int,(v),InCl,(v) and pu —v
we will denote, respectively, the interior, closure, and

complement of the F-set v of F-topological subspace.
We mention the following definitions and results

Let (X; 8) be an F-ts and u € IX. We call
A, = {ve I*:v < p}

Definition [12]. The family 8, = {v Ap: v € 6} isthe
F,-topology induced over 1 by & . The elements of &,
are called Fu-open sets

Proposition [12]. 5# verifies the following properties:
(i) if ve O, thenv E A ;

(i) CO,;,uEé'H

(iii) if Uy, u; € 6y, thenpy A py € G ;
(v) if {vj:1j €]} <8, then Vi vj €6,

Definition [12]. v € A, isa F-closed setif 4 — v €,
we note Sﬁ the family of all Fu—closed sets.

1- ON F,- RETRACTS

Definition 1.1 Letf : (X,8) — (Y,y) bea
mapping froma F-ts (X, 8) toanother F-

ts (Y,y),u € 1% . Then f iscalled :

(i) aF- perfectlycontinuous ( briefly, F,PC) mapping
F, foreachv € y;(,), wehave u Af~'(v) is both F,-
openand F-closed set of X.

(ii) a F,- completelycontinuous (briefly, FHCC)
mapping F, for each v € y;(,) wehave u A f~'(v) is
regularopen set of X.

(iii) a F,-R-continuous (brieﬂy, F”RC) mapping F,
for each F,-regular open € yf(,), We have u Af )
is F,,- regular open of X.

Remark 1.1 The implications between these different
concepts are given by the following diagram:

FHPC = FHCC = F“RC

The converse of the above implication need not be true in
general, as shown by the following examples.

Example 1.1 Let X= { ab}, Y={y}, § =
{0,1,44,25,45}. and
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Y = {9,1,61,82,63}.11,/12,/13 and#e IX
,01,05,05 IV | defined by
Ay = agsa V bgs

Ay = a3 vV by,
A3 = ag; vV bgq
U= Qoe V. byy
01 = Yoa
0, = Yos
03 = Yoe

Then, the constant function f is F;'l Rcontinuous, but not
FH-C continuous.

Example 1.2 Let X = Y={a,b}, 6 = {Q,l,
/11,12}. and

y={0, 1, 6,,6,}.2;, A;andp € I*, 6,
6, € IV , defined by

Ay = ag;q V. by,

Ay =ag, V. by
U= Qags V. boa
01 = ag3 Vo ap:
0, = ap1 V. apq

f(@) =b, f(b) =a. Then fis F,-C—
continuous, butnot F,-P continuous.

Definition 1.2 u € I*,A F-ts (X,8) is called a F,-
extremally disconnected space (abbreviated as F,ED-
space), p-closure of every F-open set of X is F -open

Lemma 1.1 Let (X,8) be anF,ED-space,u € I*.Then,
if 1 is F,-regular open set of X, itis both F, —open and F,
-closed

Theorem 1.1 Let (X, ) be anF,ED-space,u € I*,and f
:(X,8) — (Y,y) beamapping . Then the following are
equivalent.

(i) fisFE,-PC

(i) fisF,-CC

Proof It follows from lemma 1.1

Theorem 1.2 Let f:(X,6) — (Y,y) beamapping,

p€I% . Then, f isF,-perfectelycontinuous ( resp., F,-
completely continuous ) iff the inverse image of every

F,-closed set of Y is F,-openan F,-closed (resp., F,-

regular open set of X)

Proof obvious.
Theorem 1.3. Let (X,8), (Y,y) be F-tss.and f : (X,6)

— (Y,y) bea mapping .ifthegraphg: ( X,6) —
(X xY,0)of fis F,-perfectelycontinuous (resp., F,-
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completely continuous ) so is f, where 0 is the F- product
topology generated by 6 and y

Proof . Suppose the graph g : (X,8) — (X xY,0) isF,-
Perfectelycontinuous

Let v € yp_ (. 6. ,w=f"(u) Anwheren €y, we want
to show that, u A f~(f~(u) An) €5,.since 1 Xn €6,

gﬁ(#)/\(lxﬂ)eeg—»(u)'

then uA g (g7 (uIA(L1xn))=uAg (Ixn)=
pAQAA fTM))=pA fM) =pun fT(fFTWAN)
is an F,-open and an F,-closed set of 5, so f is F,-
perfectecontinuous. The proof of F,-completelycontinuous
by the same fashion.

Definition 1.3 [13] Let (X, §) be a F-ts,and A c X, Then,
the F- subspace (4, §,4) is called a F,-retract of (X, §) F,,
there exists a F,-continuous mapping 7 : (X, ) —
(A,6,) suchthatr (a)= a foralla € A. Inthiscaser
is called a F,-retraction.

Definition 1.4 Let (X,6) be a F-ts, and A X, Then,
the F-subspace (A, 8,) is called a F,-perfectely retract
( F,-completely retract, F,,-R-retract) of (X, ) F,, there
exists a F, - F,;-perfectly continuous ( F,- completely
continuous, F,- R- continuous) mapping 7 : (X, 6) —
(A,6,) suchthat r (a) =a foralla € A . In this case 1
is called a Fﬂ-perfectlyretraction ( Fu—completelyretraction,

F,,-R-retractretraction)

Remark 1.2 The implications between these different
concepts are given by the following diagram:

F#Pretract = FMCretract = FMR— retract

The converse of the above implication need not be true in
general, as shown by the following examples.

Example 1.3 .Let A and u beF-setson X ={a,b},
defined by

A= ag; V bgs

U= Qoq V bgy

0 = {Q,l,/l}, and A={a} c X . Then, (4,6,) is
a F,-Reretractof ( X,8 ), butnota F,- Cretract.

Example 1.4 Let A, and pbeF-setson X ={a,b },
defined by

A= agy V by,
B= ags V bys
L= a7 V bgo
o= {Q,l,/l,ﬁ}, and A= {a} c X. Then, (4,6,) is
a F;-C - retract of ( X,d8),butnota F,- P-retract.



Theorem 1.4 Let ( X,8 ) beaF-ts,AC Xand 1 :
(X,6) — (A, 6,) beamapping such that r(a) =

a Va € A. ifthegraph g : (X,8) — (X X A4,0)of
ris F,-perfectelycontinuous (resp., Fy-
completelycontinuos) then f is a F#—retraction , where 0 is
the product topology generated by § and &4

Proof. It follows directly from Theorem 1.3

Definition 1.5 Let (X,8) be a Fy-ts. Then (4,6, )
is said to bea F,-neighbourhood perfectlyretract ( F,-
neighborhood completely retract, F#-neighborhood R-
retract) ( F,-nbd P-retract, F,-nbd R-retract, F,-nbd C-
retract) of (X, &) if (4,84 ) isa F,- perfectlyretract

( Fy- completelyretract, F,- R-retract) of ( (Y ,8y ), such
that ACY C X, 1, €S

Remark 1.3 Every F,-P-retract is a F,-nbd P-retract,
but the converse is not true .

Example 1.5 LetX={ a,b,c }, A={ a } ©X,1;, 4,
and U be F-sets on

X, defined by

A= apz V byy V cCoa
/12: a1 \V b1

U= ags V bos V Cos

Consider § = {Q, 1,A,A, A4V A5, 44 A /12}. Then
(A, 684) isaF,-nbd P-retract of ( X,8 ), but not a F-
P-retract of ( X,6 ).

Example 1.6 Let X ={a,b,c}, A= {a}cX 1,
A, and u be F- sets on

X, defined by
M= Qo2 V boz V Coa
12: a1 Vv bl

p= agg V bog V cos

Consider & = {Q, 1,4, A, VA, 44 A AZ}. Then

(A, 64) isa F-nbd C-retract of (X,6), butnotaF,-C-
retract of ( X, 5 ).

Example 1.7 inexample 1.6 ( A4,684) is aF,-nbd R-
retract of (X, ), but not a F,-R-retract. of (X,5)

2- ON F,-SEMI CLOSURE AND F,-SEMI INTERIOR
AND ON F,-IRRESOLUTE MAPPING

Definition 2.1 Let (X,6) be a Fts, i, A€EA .
Thenv is called
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(i) (F.S.Mahmoud 2003) a F,-semiopen ( briefly,
F,s0) set if there exists A € §, .suchthatv < A1 <
Cl,(v) (or v < Cl, (Int,(v) ).
(i) [15] a F-semiclosed ( briefly, F, sc ) set if there
exists V € &, . such that
Int,(v) < A<v (or, A< Cl, (Intu(/l ))
(iii) The F,-semi-interior of A, denoted by SI,(4) =V
{ves,v< A visFysol
(iv) The F,-semi -closure of A, denoted by SC,, (1) =
Ay €d, v = AvisF,scl.

Theorem 2.1. Let (X,0 ) be a Fts , u,A €
A ,, . The following statements are equivalent.
(i) A is Fyso
i) A < cl, (Int, (1) ).
(i) CL,(A) = ¢, (Int, () ).
(iv) p— Ais Fysc
v) Int, (Cly(u—A))spu— 2
(i) t, (CLy(u— A))=Int, (p— 1)
Proof (i) = (ii) Let A be F,so There exists v € §,, such
that v < A < Cl,(v) by Theorem1.3. Int,(v) = v
since v < A, we have Int,(v) = v < Int,(4) .1t
implies Cl,(v) < Cl, (Int,(4).Since A < CL,(v),
we have A < Cl,(Int, (1). (i) = (iii) By the definition
of Cl, and (i), CL, (1) < Cl, (Int,(A). Since,
Int,(1) < A, Cl,(Int, (1) < CL,(A). Thus, we
have Cl, (4 )= Cl, (Int,(4).
(iii) = (i) Put v = Int, (1). By the definition of t,, ,
from Theorem 1.3, we have v < A < Cl,(1 )=
Cl,(Int, (1) = Cl,(Vv).Hence, A is F,so.
(iv)= (i) It is easily proved from the following v <
A< Cl,w) o u—Cl,w)sp-Asp-ve
Int,(u—v) <p—A<pu—v. (from Theorem 1.3)
(ii) > (v) and (iii) = (vi) are easily proved from
Theorem 1.3

Theorem 2.1. (F.S. Mahmoud 2003) Let (X, ) bea
Fts, u € Ay

(i) Any union of F,so sets is F,so

(i) Any intersection of F,sc sets is F,sc
Theorem 2.2. Let(X,8 )be a F-ts , p,p, L€ A.
Then,

(i Int, (1) is Fyso
(i) Cl,(1)isF,sc
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(iii) IfdisFysoand Int,(1) <B<
Cl, (1), then B is Fyso.
If AisF,scand Int,(1) < B <

Cl,(1) ,then BisF,sc.

(iv)

Proof we prove only (iii) and (iv).
(iii ) Since Ais F,so, then there exists v € §, such
that, v< A< ClL,(v) =
v =Int,(v) < Int,(1) and Cl,(A) =
Cly(v).Thus, v < B < ClL,(v). Hence, s Fyso.

(iv) It is easily proved from (iii) and Theorem 2.1.
And the following

Int,(MH)< psCl,A) © u—ClLL A< u—
p<u—Int,A)ent,(u—1) < pu—fF=<
Cl,(u— A) by Theorem 2.1

Theorem 2.3. Let (X ,0 ) be a F-s,
A,. The following statements
are valid :

(i)Ais Fyso iff A=SI,(A).

(i) A is Fysc iff 2=5C,(2).

(iii) sC,(0) =0

(iv) Int,(A) < S[,(A) £ 1 < sC,A) <
Cl, ().

(v) SCu(A) V'SC,(v)=SC, (A V ).

(vi)sC, (SC, (D)) =5, (D)
(vii) Cl,(SC, (1)) =sC,(Cl, (1) =Cl, (D)
(viii)Sl,(u— 1) = p—sC,(2).
Proof we prove only (vii) and ( viii ).
(vii') From (i ) and Theorem 2.2 SC,,(Cl, (1)) = Cl,, (1),
we only show that
Cl,(sC,(4)) =cl,(4). Since A < sC, (1), Cl,(SC, (1))
= Cl,, (). Suppose that
Cl,(SC, (1)) %£Cl,(A). By the definition of Cl,, there
exists € € 8, with A < &
such that, Cl,(SC, (1)) = & = Cl,(4). On the other
hand, since ¢ < Cl, (), A <
§ = SC,(A) < SCu(§) = SCu(CL (D)) = Clu(§) = &.
Thus, CL,,(SC, (1)) <¢. 1t
is a contradiction. Hence Cl,,(SC,(4)) < Cl,(4).
(viii) V A € &, we have the following:
u—sCM=pu—-A{v:iv=2a visF;sc}=v
{,u—v:,u—vs u—A, ,u—visF#so}:SI#(,u—
A).

w v,AE
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Definition 2.2 Let (X, ) and (VY,y) be a F-tss,
pE A, Let f:(X,8)— (Y,y)beamapping.

(1)

[Macho Stadler and M. A de Prada Vicente 1993 |
f is called F,,-continuous mapping iff £~ (v) € §,, for
eachv € Yr(w).

(i) [F .S .Mahmoud 2003] f is called F,-semi
continuous mapping iff f— (v)

is Fys0 € &, foreachv € yp(,.

(iii) f iscalled F,-irresolute mappingiff f (v) is
F,so0 € 6#, for each Fr (S0, U € yr(p).

(iv) f iscalled F,-irresolute open mapping iff f(v) is
F,s0 € Y. foreach Fr,yso v € 6.

(v) fiscalled F-irresolute closed mapping iff f(v) is
F sc € yr.  foreach F r,ysc v € §,.

Remark 2.1 Every F,-continuous mappingis F-
irresolute mapping, but the converse is not true.

Example 2.1 Let X ={a,b,c},Y={y} .6 =
{Q,l,l}. and y:{ 9,1,0} Aand peIX O €
1Y defined by

A= ags V bos
k= Qo2 V by,
0= yo1

Then, the constant function f is Fﬂ-irresolute mapping,
but not F,;-continuous.

Co.3

Proposition 2.1 Let (X,6) and (Y,y)beaF-ts's , u
€A, Letf «(X,8)—> (Y,y) be a mapping. If f is
F-irresolute mapping, then For each F, scA € yf (),
fT A isFysc € §,.

Proof Foreach F, sc set A€y = f(u) — 1 is
Fs0 set €ypy [ (FW =D Ap<(u—
f‘_(l)) ANuisFysoset€ &, f(A) Auis Fysc set
€ 6.

Proposition 2.2 Let (X,8) and (Y,y)be a F-ts’s ,
LEA, Let f :(X,6)—> (Y,y) be amapping. If For
each F,sc A € y¢ (), [ (1) isFysc € 6, then,

f (scﬂ (1)) < 5Cpy (F(A)), for each 2 € 6.
Proof Suppose there exists A € &, such that,

f (SC#(A)) * SCf(u) (f(’l))

Since, SCe(y) (f()\)) <v € y‘f(u) . Moreover, (f(A)
SV=2AZSETWA .



= (W) A pisF,sc € 8, Thus, SC, (A) < fT(v)
Ap=SC,A) <fTWA
= A thenf(SC,(A) ) < SCerpy (VAF(W) =
SCe(w (f(?\)). It is a contradiction
Proposition 2.3 Let (X,8)and (Y,y)bea F-ts’s,
HE A, Letf:(X,6) — (Y,y) be a mapping. If
[T (Slggy(A)) A < SL(fTA) Ap), foreach Ais
F, 50 € veq) € Ve . then f is F,-irresolute mapping .
Proof Let A is F,s0 € yg,) From theorem 2.3(i).
A = Slgy(A) . Since,f (D)) A p < SI,(F"(A)) A
). On the other hand, by Theorem 2.3(iv),
fCA) A p= SL(ET(A) A ). Thus, f7(A)) A
u=SL,(F"(A)) A ), thatis £(A)) A
u is Fyso € 6 = fis F-irresolute mapping .
Theorem 2.4 Let (X,6 ) and (Y,y ) be a F-ts’s,
we A, . Letf: (X,8) — (Y,y) beamapping.
The following statements are equivalent .
(i)Amap f is F -irresolute open mapping
(i) 1 (S1, ) A (1) < Sl Q) AF()),
for each A is Fyso €6,
(i) SI,(F"D) A p < (f7 (Slgy(D)) A
u, for each A € vy,
(iv) Foranyv € y}(u) and any Fsc A €
8, such thatf~(v) A p < A, there exists
F,scset p €y, with v < p such that
f“(p)N p<s A
Proof (i) = (ii) For each A be F;soset € &, since
SI,(A) < Afrom Theorem
23(iv). fF(SI,A)) Af() <t A f() by (i) f
(SIyA)) Af(p)isF,so set€ &,
hence, f (SI,(A)) Af(p) < Slgy(F@A) Af(W)).
(i) = (iii) for each A € yg(,,) from (ii) f( SI, (F~(A))) A
f(W) < Sl (D)) AF W) < Sligy®) A
F(0) = SL(F-(D)) A 1S (Sligy@) A
(i) = (iv) Let Abe F sc set €8, and A €
Yiqy Such that f~(v) Aus A
from Theorem 2.2 A = Int, (CI,((A)). Since u —
A=f"(u—v) Ay wehave SI,(u— 1) =
u— A < Slu(f‘_(u— v)) A W, by (iii) p—
A< Slu(f‘_(u— V)) Ap < £7 Sl (n—
V)Au=>A=pu— (f‘_ (Slf(u)(u—v))Au) =
£ (1= Sleg (= v)) A ) = F=(SCrey (V) A
L.
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By Theorem 2.3 (viii), thus there exists Fu SC set
p=SCs() (V) € gy withv < p suchthat £~ (p) A
H<A
(iv) = (i) Let 0 be F,soset €6, 4 = pu—
o is F, sc set €8, putv= f(u — f(0)
€ Y Weobtain fTW) Apu=fT(twW —f(0)) <
pu—(0)) = A. by (iv) there exists p € y}(#) with v
<psuch that f"(P)APU<A=pu—0 =o0=
p—=Cf~@EAu)=f~W—p)A W Thus f(o)
AN sfUTw-p)Aw<@w-—p)Af(W)

(1) On the other hand , since v < p From (1)

fONfW = fw)—v= f(u) —p . Hence,
f@ONfW)=fw) —p thatis f(o) is Fyso €

Ye() - Then f is Fu—irresolute open mapping

Definition 2.3 Let (X,&)and (Y ,y)beaF-tss,
i €A, . Let f:(X,8)—> (Y,y)beamapping, then
f iscalled Fﬂ—almost open mapping iff for each

A €6, with A =t (Cl,1)). f(A) € v
Theorem 2.5 2Let (X,6)and (Y ,y)beaF-tss,
i €A, .Let f:(X,5) > beamapping.

The following statments are equivalent.

(i) Amap fis F,-almost open mapping

(ii)f (Int#(/l))

< Intg, (f()l)),for each AisF, sc € §,

(iii) Forany v € ¥,y and any A = Cl,(Int, (1))
such that f~ (V) A < A thereexists p € Yy(, and
v<psuchthat f~ (p)Au<Aa

Proof (i) = (ii) Let A be F, sc € §, that is
Int,(Cl,(4)) < A. From Theorem 2.2, we easily
prove the following

Int,(CL,(A)) = Int, (CL,(CL,(D))).
Since f is Fﬂ—almost open mapping,

Int;o (f (Int, (CL(D) = f(Int,(CL(A) €
Yewy (D

On the other hand , Int,, (CZH(A)) <1=

Int, (Int,(CL, (1)) < Int, (1),

Thus, Int, (1) = Int,(Cl,()) < 1. >

f (It @) = fUnt, (CL,@)) =

Intey (f (Int, (CL,(A)) < Integ,y(f(D)
From(1)

(= (@1 A= Int, (Clu(/l)) € 6. Since
Int, (1) = A and AisF, sc by (ii),
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f(d) = f(lnt#()l)) < Intf(#)(f(/l)) From
Theorem 2.2, f(1) = Intf(ﬂ)(f()l)) € Yr(u):

(i) = (iii) let 2= Cl,(Int, (1)) and v € y;,, such
that f~(W)Au<A But p=f(w)— f(u—2)
since t — A = Int, (Clﬂ(u - A)) ,by (1) . Since
fe@Ap<a iff v< f()—f(u—2) then,
v<p,also, o) An= fTUF@W— flu—
DSpu—(=—D)=2= f(PAu< 2.
(ili) = (i) let obe F, sc €5, suchthat o =
Int,(Cl,(a))put v=f(u)— f(o) and 2 = p—
o with A= Cl,(Int,(1)), we obtain

fe Au=f~(fw—-f(0) su-(0) =12
by (iii) there exists p € yp(,) with v < p such that
fC@Au=<i=pu-o=>a=p—(F"(p) A
w = f"w=p) ApThus f(o)Af(p) <

U w=—p)A W) < w=p)Af(w) (1)

On the other hand , since v < p From (1)

[N = £G0 = v = (= p) AfG)

Hence from (1) and (2) f(@) Af(w) = (u—p) A

f(w
Theorem 2.6 Let(X,8)and (Y,y) be a F-ts's , u €

Ay Let f:(X,6) — (Y,y) is Fy,-semi continuous
and F,-almost open mapping, then f is F-irresolute apping
Proof By Proposition 2.1, we will show that

fT W) ApisF,sc set, VF, —scsetd € yp(,.
Since Ais F ()

scset € yg(y),we have Inte(,) (Cleyy (1) <
A.Since f is F,, — semi Continuous mapping, f

(F@) = Clegy D A =@ f~ (Clyy@) A

p isF, scset € §,,thatis f (C lf(#)(/l)) A

u isF,sc set € 8§, so, Int, (CL,(f~ (C lf(#)(/l)) A
n< = (Clrgo@) Au =

Int, (CL(F (€ Lrgy@) A

<mnt, (f~ (Clyw@®) An
since f is F,-almost open mapping, and 4 is
F, scsetys(,. By propostion 2.2
Ity ((F (€ Lrgy@) Ap)

< Inlpo F(F (C L) Ap)
Inlf(ﬂ) (le(#)(/l) = Inlf(#) (A) < A.
> Ity (f (Clrgo@) A< f~ D) Au

(),
Thus, we have Int, (CL,(f (1)) Ap)
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< Int, (CL(F (Clrgo@) An) <
mty (£ (Clry@) AR by()

<f~ @A) Apu by (2). Hence f (1) isF, sc.
Conclusion

A new F-topological notions called F-
perfectly continuous, F -

completely continuous and F - R- continuous,
F,-perfectely retract are introduced and studied ,
Using these notions we define and study F,-
completely  retract, F,-R-retract ,  F,-
neighbourhood perfectly retract, F,-neighborhood
completely retract and  F,-neighbourhood R-
retract. The notions of F,-semi closure, F,-semi
interior and F,-irresolute mapping are introduced.
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